HIGH ENERGY AND LONG-LIFE LITHIUM-SULFUR CELLS

Kumar Bugga, Simon Jones, Jasmina Pasalic, John-Paul Jones and Charlie Krause

Jet Propulsion Laboratory, California Institute of Technology

And

Mary Hendrickson and Ed Plichta
US Army RDECOM CERDEC CP&I, Aberdeen Proving Ground, MD 21005

Li-SM³ 2017 conference

IET Savoy Place, London April 26, 2017

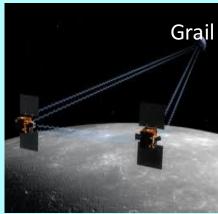
© 2017 California Institute of Technology. Government sponsorship acknowledged.

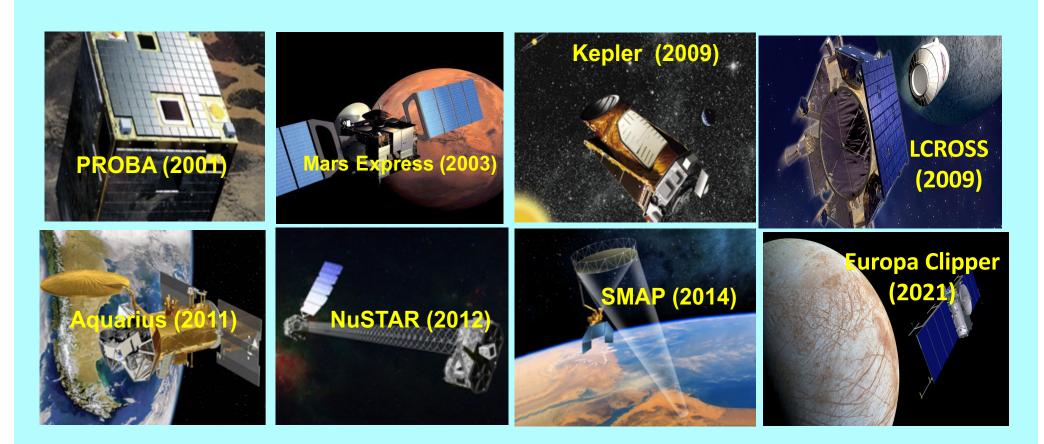
Batteries for Space Applications

Category	Mission	Battery Performance Drivers	Chemistry
Outer Planets: Ocean Worlds (Europa, Titan, Enceladus)	Orbital Missions	Long Cycle life (at partial depth of discharge)	Li-ion
	Surface Missions	Primary or rechargeable - high specific energy, long calendar life	Li-CF _x or Li-ion,
	Sample Return Missions	Primary Long calendar life High specific energy and energy density	Li-CF _x and Li-SOCl ₂ ,
Outer Planets: ICE	Orbiters	Long Cycle life (at partial depth of discharge	Li-ion
Giants (Neptune, Uranus)	Probes	Primary - high specific energy, long calendar life	Li-CF _X and Li-SOCl ₂ ,
Inner Planets: Venus	Orbital	Long Cycle life (at partial depth of discharge	Li-ion
	Aerial	High Temperature, high specific energy and good cycle life	Na-MCl ₂
	Surface	Primary High Temperature, high specific energy	Li-FeS ₂
	Sample Return Missions	Primary Long calendar life High specific energy and energy density	Li-CF _X and Li-SOCl ₂ ,
	Orbital Missions	Long Cycle life (at partial depth of discharge)	Li-ion
Mars	Aerial Missions	High specific energy, energy density and high power density	Li-ion
	Surface Missions	High specific energy, energy density and low temperature performance	Li-ion
Small Bodies : Multi- asteroid rendezvous	Sample Return Missions	Primary Long calendar life High specific energy and energy density	Li-SO ₂ Li-SOCl ₂ ,
or flyby mission	Surface missions	Primary or rechargeable - high specific energy,	Li-ion or Li-S
Planetary Cube Sat/ Small Spacecraft		High specific energy, energy density and low temperature performance	Li-ion or Li-S
Interstellar Missions		Long Calendar life	Li-Solid State?

LI-Ion Batteries in Space Missions

Missions using batteries with Large format Cells





- Custom prismatic cells from 10-135 Ah
- Chemistry (MCMB anode, LiNi_{0.8}Co_{0.2}O₂ cathode and low temperature electrolyte
- Space station cells with graphite anode, LiNi_{0.8}Co_{0.15}Al_{0.05}O₂ cathode
- Cylindrical cells (SAFT) in several satellites

LI-Ion Batteries in Space Missions

Missions with small Commercial Cells

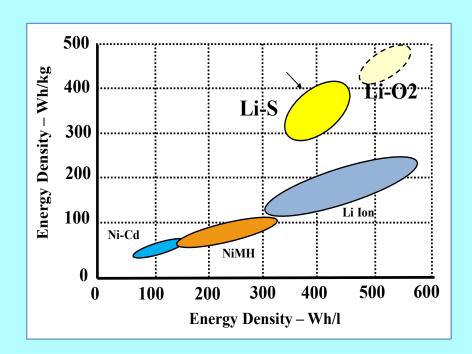
- Commercial 18650 cells originally from Sony (hard carbon–LiCoO₂).
- Recent batteries have cells with high specific energies (>220 Wh/kg
- No need for cell balancing electronics

Application for Li-S Batteries

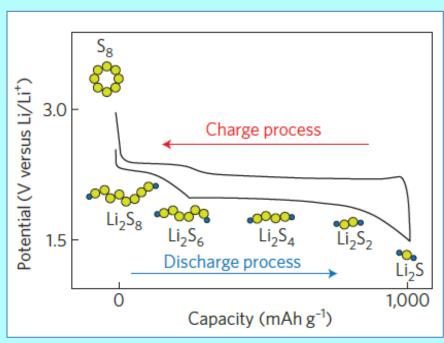
- Astronaut EVA Requirements
 - Eight hours of run time
 - High specific energy of 250 Wh/kg (battery) or 400 Wh/kg (at the cell level)
 - Cycle life 100-200 cycles
 - Evaluated Li-rich NMC cathodes and Si anodes over the last few years. Despite encouraging results in half-cells, the performance in prototype cells wasn't as impressive.
 - Li-S is the system that can possibly meet these requirements, due to the short cycle life requirement.
- Unmanned aerial vehicles (UAVs) or drones
- Planetary rovers
- Army applications (soldier power)

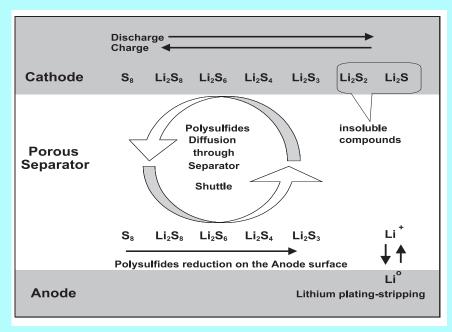


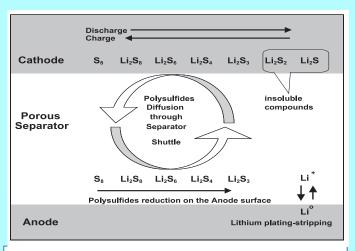
Portable Life Support System

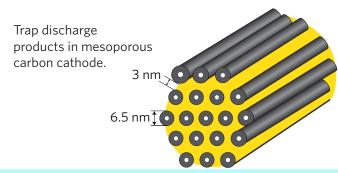

DoD Applications- Soldier Power Trends

 Lithium-sulfur chemistry is expectedly the next-generation rechargeable battery technology for soldier power needs




Why Lithium-Sulfur Batteries


- High theoretical specific energy of 2567
 Wh/kg
- Inexpensive and Environmentally benign
- Abundant in the Earth's crust
- 250-400 Wh/kg realized in practical cells.
 - Higher specific energy cells have shorter cycle life

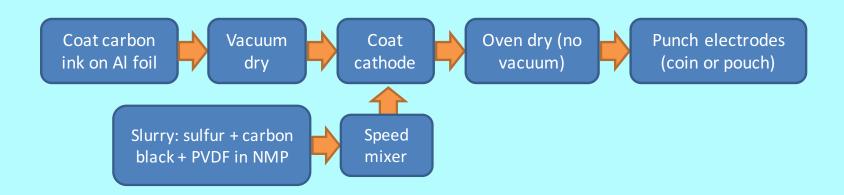


Problems with Li-S and Mitigation Strategies

- Anode passivation and dendrite formation.
- Sulfur expands by 79%
- Poor conductivity of S and its discharge products.
- Polysulfides are soluble in many solvents: Form Redox shuttle and insulating layer (Li₂S) on the anode

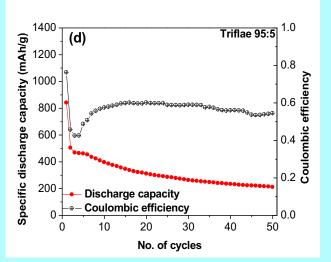
Problems	Strategies Adopted	Rationale	
Poor cyclabaility and dendrites	Coat with protecting layer (solid electrolyte) Coat with protecting layer (gel polymer)	Blocks contact between Li and soluble sulfide species and/or mechanically inhibi Li dendrites	
Polysulfide dissolution,	Immobilize in carbon host matrix	Strong S-C interactions trap sulfides (e.g. as S_n^{x} chain-like species, as cyclo- S_8 allotrope does not fit inside pores)	
redox shuttle behavior	Use sulfide (discharge product) as cathode	Allows use of non-Li anodes	
Poor Conductvity and expansion	Meso/microporous carbon support for S	High electronic conductivity of C mitigate poor S conductivity	
Passivation	Use sulfide (discharge product) as cathode	Allows use of non-Li anodes	
Calabla aul Cdaa	Organic electrolyte with additives (e.g. LiNO ₃ , P ₂ S ₅)	Good conductivity, additives react preferentially with sulfide species and passivate Li surface, depassivate cathode	
Soluble sulfides affecting anode stability and	Ionic liquid electrolyte	Sulfides are insoluble in certain ionic liquids	
performance	Solid-state electrolyte	Blocks contact between Li and soluble sulfide species and/or mechanically inhibit Li dendrites	

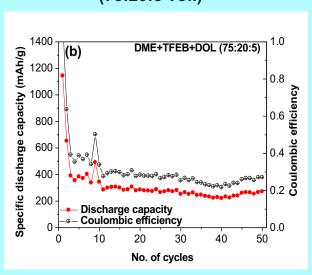
 Some of these approaches have shown improved cycle life, but only with low sulfur loadings


Sulfur cathode With high Loadings for a 400 Wh/kg Li-S cell

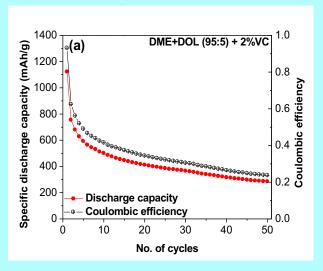
- High cathode loadings required for high energy cells
 - High energy Li-ion cells have cathodes (nickel cobalt aluminum oxide, NCA) with a loading of 15 mg/cm², i.e., ~8.7 mWh/cm² per side of the electrode.
 - For a specific energy of 400 Wh/kg, we will need 1.5 times the specific energy compared to Li-ion cells, i.e., 13 mWh/cm² per side.
 - With a voltage of 2.1 V for Li-S cell, this implies an areal capacity of ~6.2 mAh/cm² for the sulfur cathode.
 - With 800 mAh/g from sulfur (and with a composition of 65% sulfur),
 the required loading is 12 mg/cm².
 - Almost all reports of Li-S cells in the literature describe performance of sulfur cathodes with a low loading of < 5mg/cm² (mostly 2-3 mg.cm⁻²) and/or with low proportion of sulfur in the cathode.

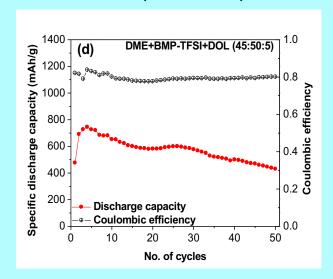
Electrolytes for Li-S Cells

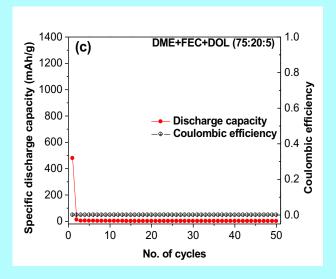

- Screened different electrolytes with co-solvents and additives:
 - 1.0M LiOTf in DME + DOL (95:5 vol.)
 - 1.0M LiTFSI, DME + DOL (95:5 vol.)
 - 1.0M LiTFSI, DME + DOL (95:5 vol.) + 2% VC
 - 1.0M LiTFSI, DME + TFEB + DOL (75:20:5 vol.) (fluorinated ester co-solvent)
 - 1.0M LiTFSI, DME + FEC + DOL (75:20:5 vol.) (FEC co-solvent)
 - 1.0M LiTFSI, DME+BMP-TFSI+DOL (45:50:5 vol.) (Ionic Liquid co-solvent)
- Best performance was observed in 1.0M LiTFSI, DME + DOL (95:5 vol.)
- Further improvement with $LiNO_3$ (0.2 M) and with a carbon cloth interlayer (Manthiram et al).
- Cathode: Sulfur blended with carbon (Super P) with PVDF binder (55% sulfur + 40% carbon + 5 % PVDF)



Effect of Electrolyte in a Li-S Cell

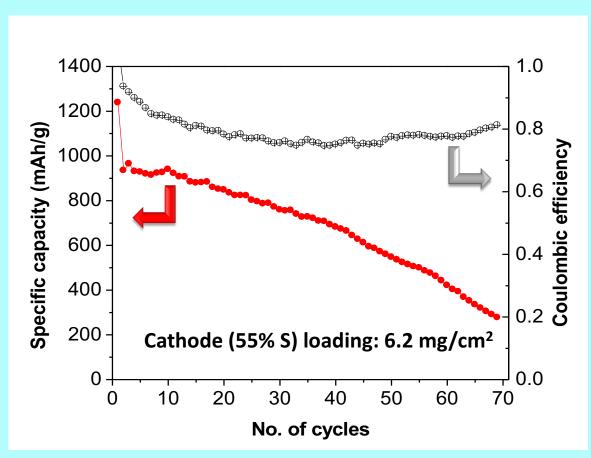

1.0M LiOTf, DME+DOL (95:5 vol.)


1.0M LiTFSI, DME+TFEB+DOL (75:20:5 vol.)


1.0M LiTFSI, DME+DOL (95:5 vol.) + 2% VC

1.0M LiTFSI, DME+BMP-TFSI+DOL (45:50:5 vol.)

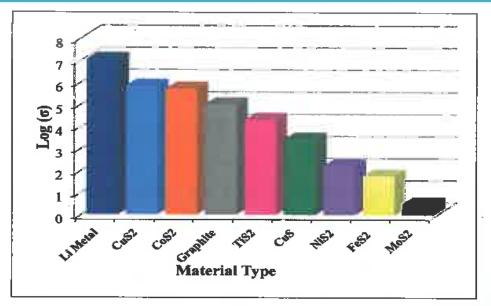
1.0M LiTFSI, DME+FEC+DOL (75:20:5 vol.)


- Imide salt > Triflate salt
- VC additive provides no improvement
- FEC and TFEB co-solvents are not compatible.
- Performance degrades with the ionic liquid (BMP)

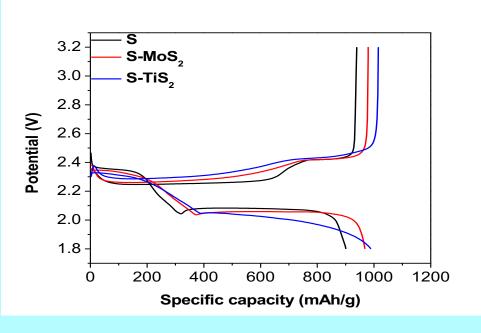
Cathode loading: 4-5 mg/cm²

Sulfur cathode with high Loading in a Li-S cell

1.0MLiTFSI+DME+DOL(95:5) with a Carbon Cloth

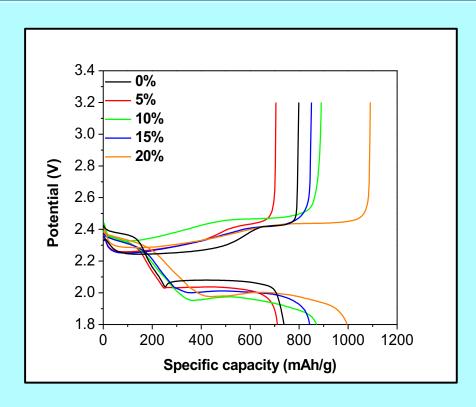


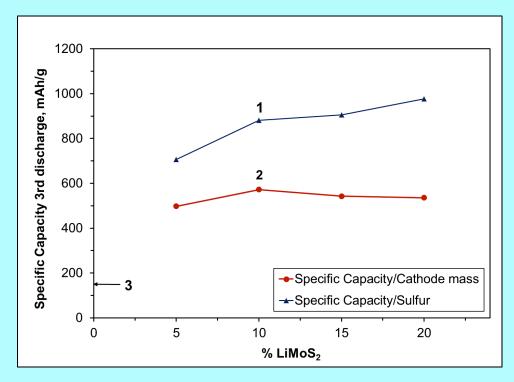
- Lower capacity and utilization of sulfur in thicker cathode even with carbon cloth interlayer and LiNO₃.
- With a denser sulfur cathodes, more polysulfides are expected to dissolve in the electrolyte.



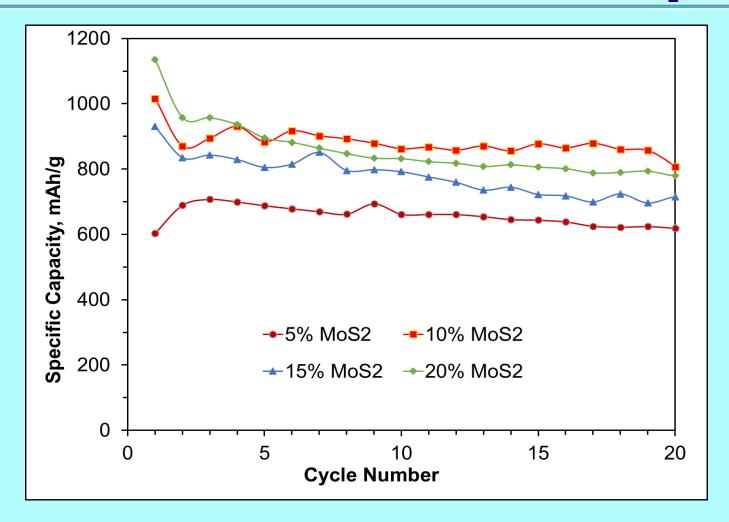
High Areal Capacity S Cathodes

- Transition metal sulfide undergoes reversible reactions around the same voltage range and can add to the cathode capacity and also mediate the sulfur redox reaction.
- Metal sulfide provides some electronic/ionic conductivity can replace portion of the carbon.
 - Easier to make dense electrodes with the metal sulfide additions in place carbon.
- TiS₂ (Manthiram and Cui et al), VS₂,
 ZrS₂ (Cui et al) with low loadings
 (<5mg/cm²), CuS₂ (Takeuchi et al)
- We Screened several sulfides: TiS₂,
 MoS₂ have shown to be beneficial

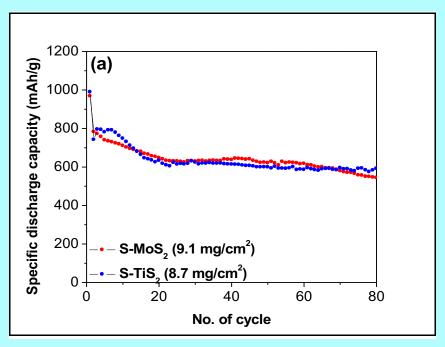


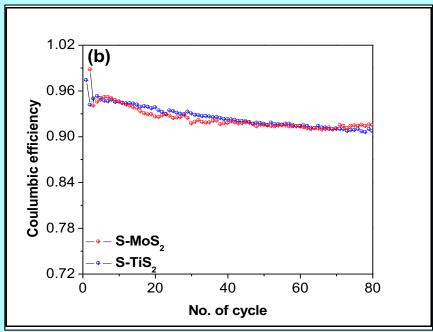

Takeuschi et al DoE Report

Sulfur Cathode With Different amounts of MoS₂



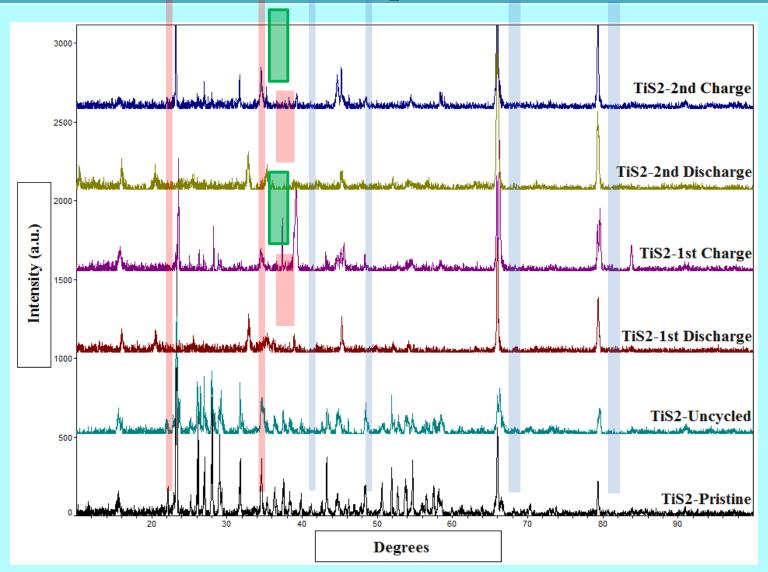
- Three times the capacity per gram of cathode material compared to Liion cathode powder (NCA)
- Specific capacity of sulfur increases with MoS₂ loading, but specific capacity of total cathode does not


Sulfur Cathode With Different amounts of MoS₂

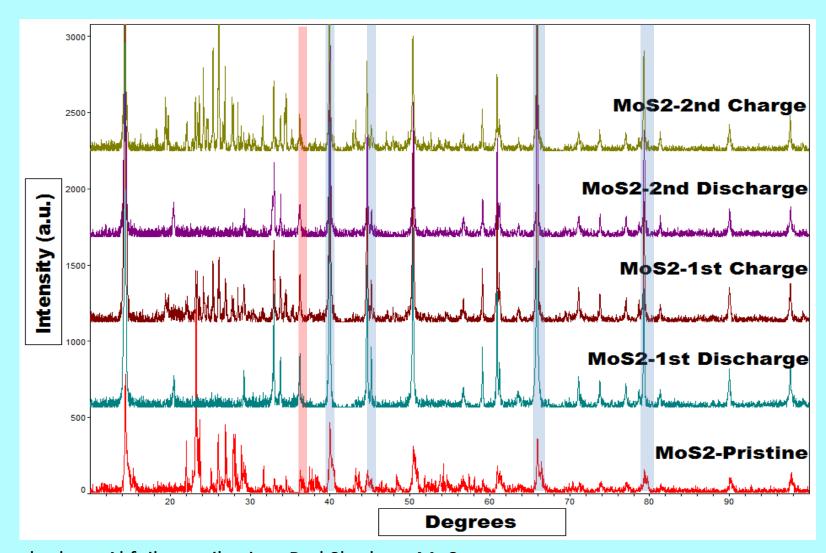


High sulfur utilization and capacity retention during cycling with 10-15% of MoS2 in the cathode (65% sulfur)

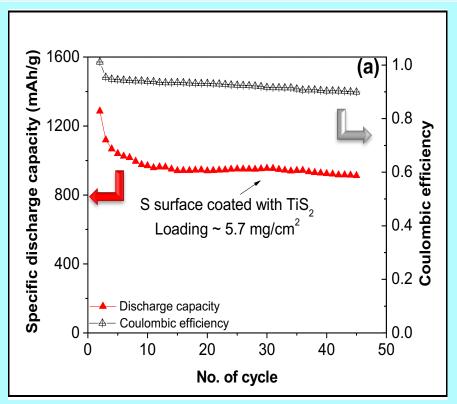
Sulfur blended with MoS₂ and TiS₂ (15w%)

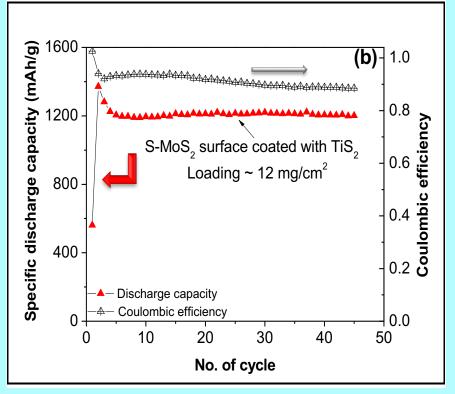


- Good performance considering the high cathode loading and high proportion of sulfur (4.6 mAh/cm² per side)
- High coulombic efficiency suggests polysulfide trapping.

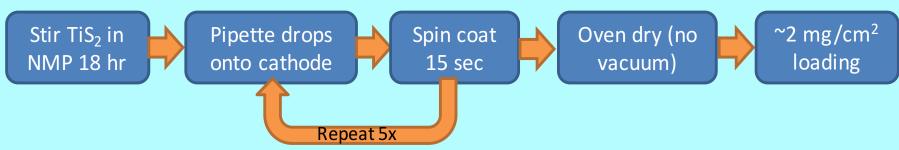

X-ray Diffraction (XRD): TiS₂- Blended Sulfur Cathode

- Blue shades ~ Al foil contribution; Red Shades ~ LiTiS₂; Green shades ~ TiS₂
- The XRD spectra for TiS₂ electrodes showed a transition from TiS₂ to LiTiS₂ after discharge and transition from LiTiS₂ to TiS₂ after charge.


X-ray Diffraction (XRD): MoS₂- Blended Sulfur Cathode



- Blue shades ~ Al foil contribution; Red Shades ~ MoS₂.
- Similar to the baseline and MoS_2 electrodes the S- MoS_2 cathode showed the presence of sulfur peaks after charging and disappearance of the same peaks after discharging.
- No change in the MoS₂ peaks

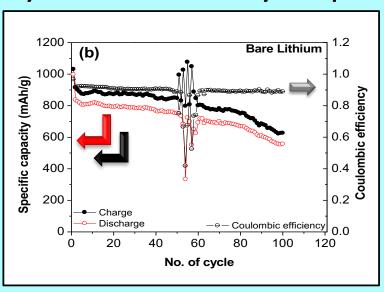


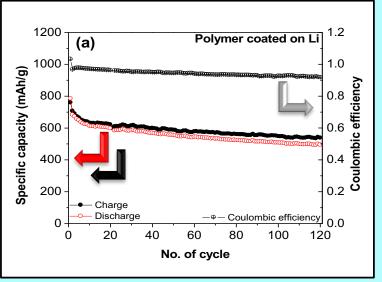
Metal Sulfide Coating as Polysulfide Blocking Layer

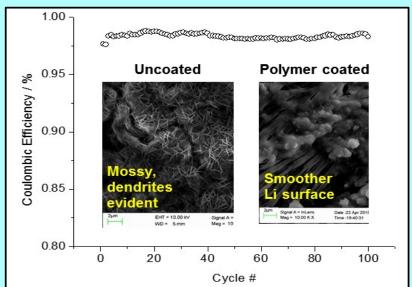
- Cycling performance of a conventional sulfur improves with a coating of TiS₂.
- The sulfur cathode blended with MoS₂ and coated with TiS₂ shows a high specific capacity (~1200 mAh/g) relative to S and good cycling stability even with an overall material loading of ~13 mg/cm². A portion of this capacity is contributed by TiS₂.

Physical and Chemical Entrapment with TiS₂

Cui's ab initio simulations


- Strong Li–S interaction (between the Li atoms in Li_2S and S atoms in TiS_2), as well as strong S–S interaction between the S atoms in Li_2S and S atoms in TiS_2).
- The binding energy between Li₂S and a single layer of TiS₂ was calculated to be 2.99 eV. This value is 10 times higher than that between Li₂S and a single layer of carbon-based graphene, which is a very common encapsulation material used.
- The much stronger interaction between Li2S and TiS2 can be explained by their similar ionic bonding and polar nature, unlike graphene which is covalently bonded and nonpolar in nature.
- Entities that bind strongly to Li₂S exhibit strong binding with Li₂S_n species as well owing to their similar chemical bonding nature.


Cui et al: Nature material Nature Communications 2014 | 5:5017 | DOI: 10.1038



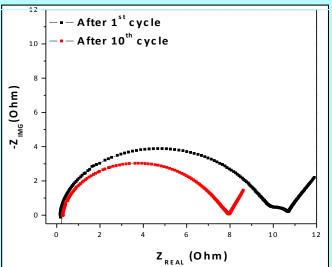
Polymer coating on a metal sulfide -blended cathode

3 layers of PEDOT-PEO Polymer spin coated on S:TiS2:CB:PVDF(65:15:15:5)

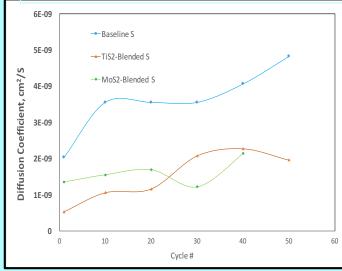
Cathode loading: 9 mg/cm²

Half-cell

Stable capacity with the PE-coated cathode, but slightly lower capacity than bare Li.



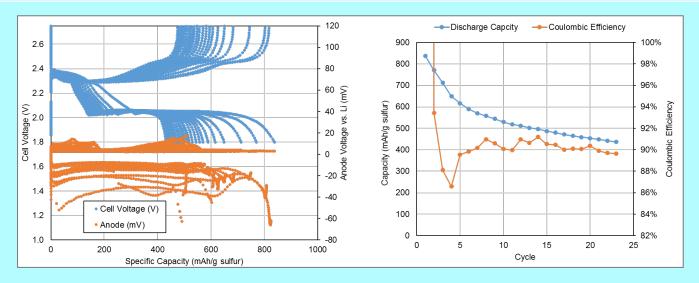
Kinetics of Sulfur Cathode


Kinetics Tafel Polarization

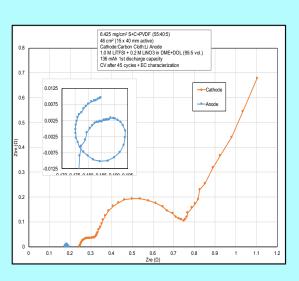
0.18 0.16 MoS2-Blended S 0.14 TiS2-Blended 0.12 Baseline Overpotential, 0.10 0.06 0.04 0.02 0.00 10 100 Log I

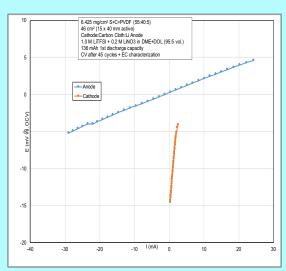
EIS of MoS₂-Blended S Cathode

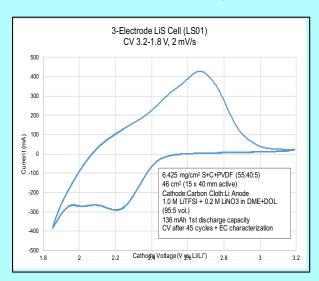

Diffusional Kinetics from PITT Measurements



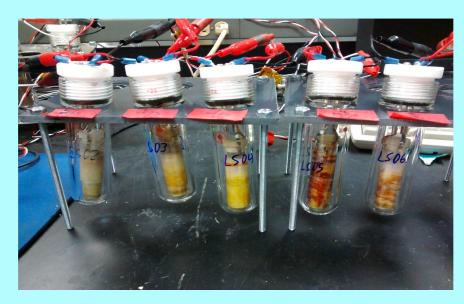
- Identical kinetics for sulfur reduction
- The exchange current density of pristine sulfur cathode is 0.19 mA/cm². In contrast, the exchange current densities of the composite cathodes with TiS₂ and MoS₂ blends are 0.21 mA/cm² and 0.23 mA/ cm², respectively
- Stable interface and lower impedance upon cycling
- Similar kinetics for Li diffusion in the cathodes.



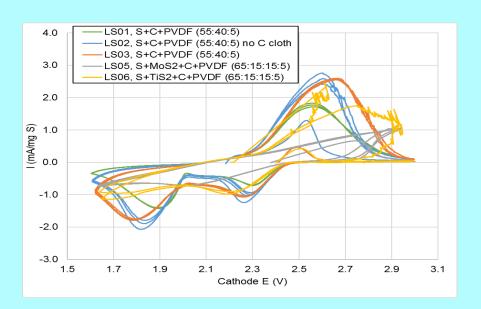

Three-Electrode Li-S cells

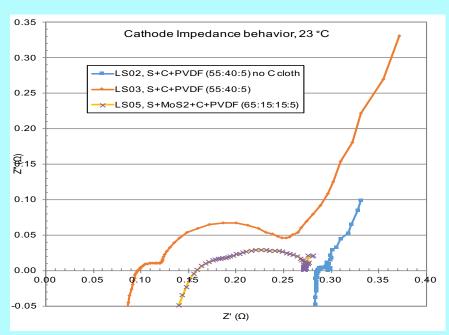


Performance similar to that in coin cells. Lithium over potentials are insignificant

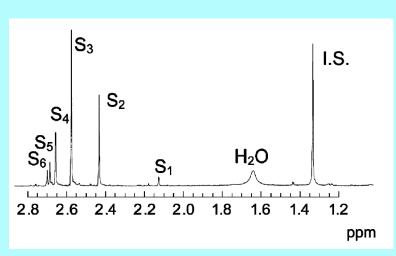


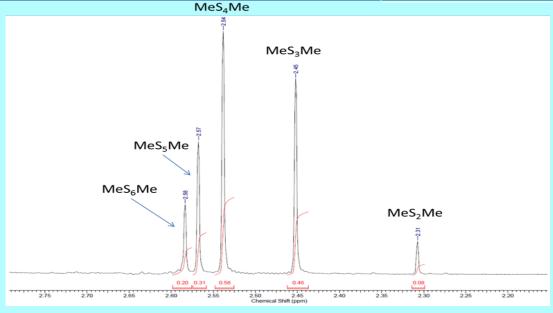
Electrolyte color changes during cycling




Li-S wound 3-electrode cells with baseline S and S-blended with MoS₂ or TiS₂

Electrolyte color changes during cycling


Cell ID			Theoretical Capacity (mAh)
LS02	0214-S55-1	5.3	150.7
LS03	0214-S55-2	5.5	157.6
LS04 LS05 LS06	0214-S65-3 0214-Mo-4 0214-Ti-5	6.6 10.3 9.5	222.2 348.9 322.3

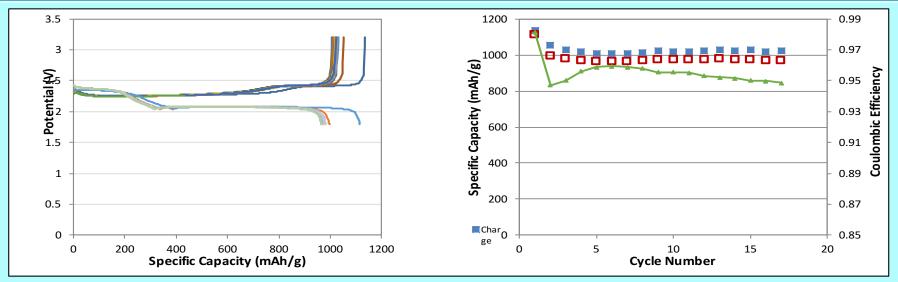


Polysulfides in Electrolytes

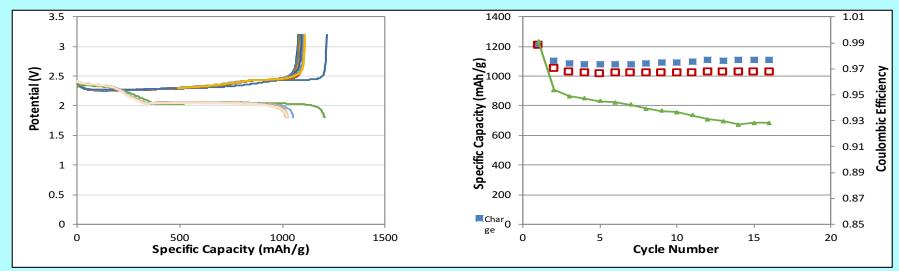
¹H NMR spectrum from methylated polysulfide solution (D. S. Argyropoulos, Y. Hou, R. Ganesaratnam, D. N. Harpp, and K. Koda, Holzforschung, 59, 124–131 (2005)).

¹H NMR spectrum from Li-S Ti cell (after 10 cycles)

- Cycle pouch cell 10 times
- Remove electrolyte with syringe (~1.5 mL)
- Add 0.1 mL dimethyl sulfate and stir at rt
- Add 1 mL CDCl₃
- Acquire ¹H NMR

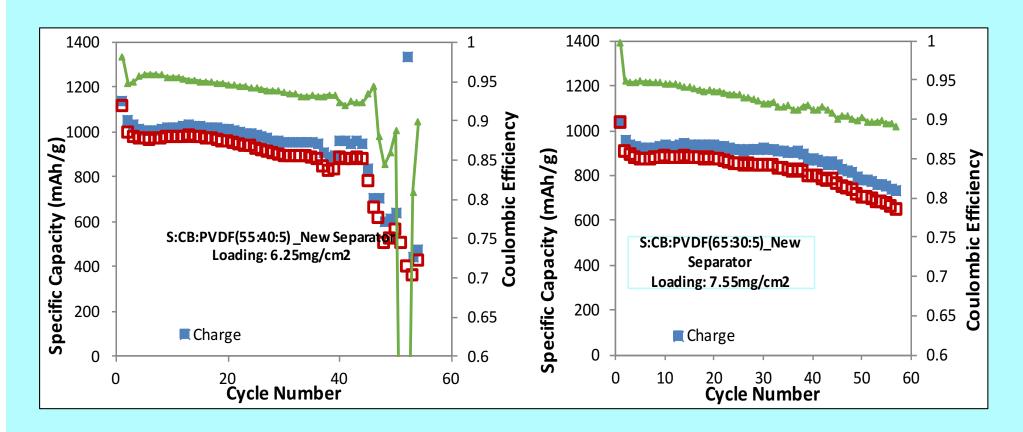

The total content of polysulfides was found to be 4.65 % in the Li/S-MoS₂ cell and 2.97 % in Li/S-TiS₂ cell.

	LiS-Mo	LiS-Ti
S ₂	0.21 %	0.09 %
S ₃	1.39 %	0.68 %
S ₄	1.61 %	1.18 %
S ₅	0.90 %	0.57 %
S ₆	0.54 %	0.45 %
Total	4.65 %	2.97 %


Polysulfides in electrolyte

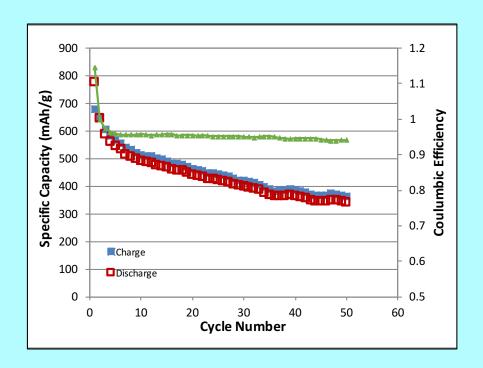
Li-S cells with New Separators

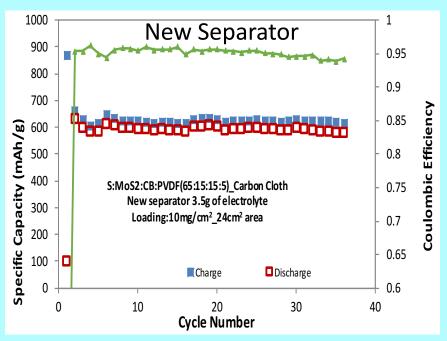
Composition: (55:40:5) Loading: 6.25mg/cm²; Second discharge capacity 997.15mAh/g



S:CB:PVDF(65:30:5)_Cloth New Separator_1mm Spacer Loading: 8.1mg/cm2 2-nd Disch.Cap. 1052.76mAh/g

(Composition: 65:30:5) Loading: 8.1mg/cm²; 2-nd Discharge Capacity: 997.15mAh/g


Performance Li-S cells with the new separator



Failure around 50 cycles due to anode. Requires anode protection

Li- S Pouch Cells

- Fabrication of Li-S pouch cells is tricky (amount of electrolyte).
- Good coulombic efficiency but a high fade rate during cycling (baseline sulfur)
- Excellent performance with high sulfur content (65%) and loading (10 mg/cm²) with MoS₂ blending (15%) and new separator

Summary

- Novel sulfur/metal sulfide (TiS₂ and MoS₂) and sulfur composite cathodes display high capacity of ≥800 mAh/g (based on sulfur content), high coulombic efficiency and good cycle life (>75% retention through 80 cycles of 100% depth of discharge) at C/3 rate.
 - High cathode loadings (12 mg/cm² or ~6 mAh/cm² per side) were demonstrated in Li-S cells containing composite cathodes with good utilization
 - Result in a high specific energy of 400 Wh/kg in prototype cells.
- In addition to the metal sulfide blends, metal sulfide coatings also improve the cycle life by minimizing the polysulfides in the electrolyte.
- PEDOT-co-PEO polymer-coating of Li anode provides some protection from polysulfides in full Li-S cells and improves cycle life. Ceramic electrolyte protected Lia nodes are under evaluation.
- New separators and metal sulfide blends/coatings offer interesting opportunities for further advances in this technology.

Acknowledgements

This research was carried out at the Jet Propulsion Laboratory (JPL), California Institute of Technology under a contract with the National Aeronautics and Space Administration. We thank Ed Plichta and Mary Hendrickson of US Army CERDEC for the financial support.